SPSS+AMOS数据分析案例教程-关于中介模
SPSS视频教程内容目录和跳转链接
Meta分析辅导+代找数据
SPSS+AMOS数据分析案例教程-关于中介模
SPSS视频教程内容目录和跳转链接
R语言快速入门视频教程
Python智联招聘数据分析
LCA潜在类别分析和Mplus应用
Amos结构方程模型数据分析入门教程
倒U关系回归分析中介效应和调节效应分析SPSS视频教程
统计咨询(图文问答)

mplus如何计算组内相关系数ICC

在B站@mlln-cn, 我就能回答你的问题奥!

文章目录
  1. 1. ICC 的大小意义
  2. 2. ICC 如何计算
    1. 2.1. SPSS 的方法
    2. 2.2. R 计算方法
    3. 2.3. HLM 结果
    4. 2.4. Mplus 的方法

组内相关系数(ICC)是一个通用的统计量,用于多水平建模、方差分析、心理测量学和其他领域。它衡量的是组内(或类别内)的聚类程度,但它也代表了一个互补的概念,即组间的变异程度。如果我们认为数学成绩$Y{ij}$的方差可以分为由于组内个体差异导致的方差$\sigma^{2}$(例如,学校内学生的数学乘积的方差)和组间方差$\tau_{0}^{2}$(例如,学校平均数学成绩的方差),那么我们可以创建一个由组引起的方差与总方差的比值:

$$ ICC=\rho={\frac{\tau_{0}^{2}}{\sigma^{2}+\tau_{0}^{2}}} $$

所得值理论上介于0和1.0之间,因为它是一个方差的比率,较高的值反映了组间变异性的增加。因此,ICC提供了与方差分析类似的信息。尽管可以计算ICC的标准误差、显著性检验和置信区间,但我认为这通常是不相关的,因为在忽略聚类的情况下,一个微不足道的ICC会导致有偏见的标准误差(从而导致第一类错误),而截距的方差显著性检验则提供了关于显著的组间变异性信息。上述公式常用于计算ICC,但也有人提出了其他方法(Bliese, 1988; Shrout & Fleiss, 1979)。尽管如此,ICC是一个有价值的描述性统计量,用作初步步骤以更好地理解由于组差异导致的方差比例。

ICC 的大小意义

ICC越大代表组间变异程度越大,当ICC=0时,代表组间变量为0,代表数据只存在组内变异,以学校和学生两个层面为例,ICC为0时,学校跟学校相比,校内学生平均成绩没有差异,当ICC为1时,同一个学校内部的学生成绩完全一样,没有变异,不同学校的学生成绩有差异。

以下面的表格为例:

ICC 如何计算

SPSS 的方法

在spss中做多水平回归(混合效应模型)时,构建仅有随机截距的空模型,就可以计算组间和组内方差:

依据以上公式计算ICC:

8.614025/(8.614025+39.148322)

R 计算方法

1
2
3
4
5
6
> #nlme provides standard deviations of the random effects by default, use VarCorr to obtain variances
> VarCorr(model)
schoolid = pdLogChol(1)
Variance StdDev
(Intercept) 8.614025 2.934966
Residual 39.148322 6.256862

或者,可以使用 psychometric 包的 icc 函数:

1
2
3
> library(psychometric)
> ICC1.lme(mathach,schoolid,data=mydata)[1]
0.1803518

HLM 结果

Mplus 的方法

在mplus当中,计算ICC的代码如下,下面你需要更改成自己的数据文件、变量名,

1
2
3
4
5
6
7
8
9
10
DATA:
FILE = datafielname.dat; ! 数据文件
VARIABLE:
NAMES=class ! 变量名称
var1
var2;
USEVAR = var1 var2; ! 需要计算ICC的变量
CLUSTER =class; ! 集群变量
ANALYSIS:
TYPE = TWOLEVEL BASIC;

统计咨询

统计咨询请加入我的星球,有问必回

加入星球向我提问(必回),下载资料,数据,软件等

赞助

持续创造有价值的内容, 我需要你的帮助